时间:2022-03-22 10:37:07 | 栏目:Python代码 | 点击:次
前言:如果你使用的是Anaconda中的Jupyter,则不需要下载Pands和Numpy库;如果你使用的是pycharm或其他集成环境,则需要Pands和Numpy库
import numpy as np
a=np.random.randint(0,10,size=(3,4))
np.savetext("score.csv",a,deliminter=",")
a:自己随便创建的数组,deliminter:分隔符,score:要读取的文件名
或者
import numpy as np
data=np.loadtxt("score.csv",delimiter=",",skiprows=1,dtype=str)
skiprows:跳过第一行,dtype:数据读出的类型为字符型
import csv
with open("score.csv",'r')as fp:
reader=csv.reader(fp)
for x in reader:
print(x)
reader:迭代器
import numpy as np
c=np.random.randint(0,10,size=(2,3))
np.save("文件名",c)
c1=np.load("文件名.npy")
import pandas as pd
df=pd.read_csv("exl.csv")
或者
import pandas as pd
pd.read_table("exl.csv",sep=',')
sep:分隔符
import pandas as pd BS=pd.read_clipboard
import pandas as pd
df=read_excel("exl.xlsx")
import os os.chdir()
chdir()中写上你想读取文件的目录,表示将目录转化到你想读取文件的目录.
read_csv 从文件,URL,文件型对象中加载带分隔符的数据。默认分隔符为逗号read_table 同上,但默认分隔符为制表符(“t”)read_fwf 读取定宽列格式数据(无分隔符)read_clipboard 读取剪贴板中的数据read_excel 从Excel 或xlsx文件中读取表格数据read_hdf 读取pandas写的HDF5文件read_html 读取html文档中的所以表格read_json 读取json字符串中的数据read_msgpack 二进制格式编码的pandas数据read_pickle 读取python pickle 格式中存储的任意对象read_sas 读取存储于SAS系统自定义存储格式为SAS数据集read_sql 读取SQL查询结果为pandas的DataFrameread_stata 读取stata文件格式的数据集