当前位置:主页 > 软件编程 > Python代码 >

解决Pytorch训练过程中loss不下降的问题

时间:2021-01-30 10:28:00 | 栏目:Python代码 | 点击:

在使用Pytorch进行神经网络训练时,有时会遇到训练学习率不下降的问题。出现这种问题的可能原因有很多,包括学习率过小,数据没有进行Normalization等。不过除了这些常规的原因,还有一种难以发现的原因:在计算loss时数据维数不匹配。

下面是我的代码:

loss_function = torch.nn.MSE_loss()
optimizer.zero_grad()
output = model(x_train)
loss = loss_function(output, y_train)
loss.backward()
optimizer.step()

要特别注意计算loss时网络输出值output和真实值y_train的维数必须完全匹配,否则训练误差不下降,无法训练。这种错误在训练一维数据时很容易忽略,要十分注意。

您可能感兴趣的文章:

相关文章