python设置值及NaN值处理方法
时间:2021-04-15 11:16:17|栏目:Python代码|点击: 次
如下所示:
python 设置值
import pandas as pd
import numpy as np
dates = pd.date_range('20180101',periods=6)
df = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=['A','B','C','D'])
print(df)
A B C D
2018-01-01 0 1 2 3
2018-01-02 4 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
df.loc['20180102','A'] = 1111 print(df)
A B C D
2018-01-01 0 1 2 3
2018-01-02 1111 5 6 7
2018-01-03 8 9 10 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
df.iloc[2,2] = 2222 print(df)
A B C D
2018-01-01 0 1 2 3
2018-01-02 1111 5 6 7
2018-01-03 8 9 2222 11
2018-01-04 12 13 14 15
2018-01-05 16 17 18 19
2018-01-06 20 21 22 23
df[df.A>12]=0 #修改df数据中符合条件的所有值 print(df)
A B C D
2018-01-01 0 1 2 3
2018-01-02 0 0 0 0
2018-01-03 8 9 2222 11
2018-01-04 12 13 14 15
2018-01-05 0 0 0 0
2018-01-06 0 0 0 0
df.A[df.A<4]=11 #修改df数据中A列符合条件的所有值 print(df)
A B C D
2018-01-01 11 1 2 3
2018-01-02 11 0 0 0
2018-01-03 8 9 2222 11
2018-01-04 12 13 14 15
2018-01-05 11 0 0 0
2018-01-06 11 0 0 0
df['F'] = np.nan print(df)
A B C D F
2018-01-01 11 1 2 3 NaN
2018-01-02 11 0 0 0 NaN
2018-01-03 8 9 2222 11 NaN
2018-01-04 12 13 14 15 NaN
2018-01-05 11 0 0 0 NaN
2018-01-06 11 0 0 0 NaN
print(np.any(df.isnull())== True) #isnull检测是否含有NaN值,有就返回True。np.any()检测df数据中是否含有等于Ture的值
True
NaN值填充:print(df.fillna(value=0))
上一篇:使用keras实现densenet和Xception的模型融合
栏 目:Python代码
下一篇:Python3利用print输出带颜色的彩色字体示例代码
本文标题:python设置值及NaN值处理方法
本文地址:http://www.codeinn.net/misctech/101499.html






