欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

tensorflow如何继续训练之前保存的模型实例

时间:2021-04-17 09:50:39|栏目:Python代码|点击:

一:需重定义神经网络继续训练的方法

1.训练代码

import numpy as np
import tensorflow as tf
x_data=np.random.rand(100).astype(np.float32) 
y_data=x_data*0.1+0.3
weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w")
biases=tf.Variable(tf.zeros([1]),name="b")
 
y=weight*x_data+biases
 
loss=tf.reduce_mean(tf.square(y-y_data)) #loss
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)
 
 
init=tf.global_variables_initializer() 
sess=tf.Session()
sess.run(init)
saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
  sess.run(train)
  saver.save(sess,"./save_mode",global_step=step) #保存
  print("当前进行:",step)

第一次训练截图:

2.恢复上一次的训练

import numpy as np
 
import tensorflow as tf
 
sess=tf.Session()
saver=tf.train.import_meta_graph(r'save_mode-9.meta')
saver.restore(sess,tf.train.latest_checkpoint(r'./'))
 
print(sess.run("w:0"),sess.run("b:0"))
 
 
 
graph=tf.get_default_graph() 
weight=graph.get_tensor_by_name("w:0") 
biases=graph.get_tensor_by_name("b:0")
 
 
x_data=np.random.rand(100).astype(np.float32)
y_data=x_data*0.1+0.3
y=weight*x_data+biases
 
 
loss=tf.reduce_mean(tf.square(y-y_data))
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)
saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
  sess.run(train)
  saver.save(sess,r"./save_new_mode",global_step=step)
  print("当前进行:",step," ",sess.run(weight),sess.run(biases))

使用上次保存下的数据进行继续训练和保存:

#最后要提一下的是:

checkpoint文件

meta保存了TensorFlow计算图的结构信息

datat保存每个变量的取值

index保存了 表

加载restore时的文件路径名是以checkpoint文件中的“model_checkpoint_path”值决定的

这个方法需要重新定义神经网络

二:不需要重新定义神经网络的方法:

在上面训练的代码中加入:tf.add_to_collection("name",参数)

import numpy as np
import tensorflow as tf
x_data=np.random.rand(100).astype(np.float32)
 
y_data=x_data*0.1+0.3
weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w")
biases=tf.Variable(tf.zeros([1]),name="b")
y=weight*x_data+biases
 
loss=tf.reduce_mean(tf.square(y-y_data))
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)
 
tf.add_to_collection("new_way",train)
init=tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
saver=tf.train.Saver(max_to_keep=0)
 
for step in range(10):
  sess.run(train)
  saver.save(sess,"./save_mode",global_step=step)
  print("当前进行:",step)

在下面的载入代码中加入:tf.get_collection("name"),就可以直接使用了

import numpy as np
import tensorflow as tf
sess=tf.Session()
saver=tf.train.import_meta_graph(r'save_mode-9.meta')
saver.restore(sess,tf.train.latest_checkpoint(r'./'))
print(sess.run("w:0"),sess.run("b:0"))
graph=tf.get_default_graph()
weight=graph.get_tensor_by_name("w:0")
biases=graph.get_tensor_by_name("b:0")
 
y=tf.get_collection("new_way")[0]
 
saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
  sess.run(y)
  saver.save(sess,r"./save_new_mode",global_step=step)
  print("当前进行:",step," ",sess.run(weight),sess.run(biases))

总的来说,下面这种方法好像是要便利一些

上一篇:使用python matploblib库绘制准确率,损失率折线图

栏    目:Python代码

下一篇:Python爬虫设置Cookie解决网站拦截并爬取蚂蚁短租的问题

本文标题:tensorflow如何继续训练之前保存的模型实例

本文地址:http://www.codeinn.net/misctech/102777.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有