欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

在python中做正态性检验示例

时间:2021-04-21 09:38:58|栏目:Python代码|点击:

利用观测数据判断总体是否服从正态分布的检验称为正态性检验,它是统计判决中重要的一种特殊的拟合优度假设检验。

直方图初判 :直方图 + 密度线

QQ图判断:(s_r.index - 0.5)/len(s_r) p(i)=(i-0.5)/n 分 位数与value值作图

排序

 s.sort_values(by = 'value',inplace = True)
 s_r = s.reset_index(drop=False)

分位数:

s_r['p'] = (s_r.index - 0.5)/len(s_r)
s_r['q'] = (s_r['value'] - mean) / std
print(s_r.head())
# 计算百分位数
# 计算q值

ax3 = fig.add_subplot(3,1,3)
ax3.plot(s_r['p'],s_r['value'],'k',alpha=0.5,linewidth = 3)

st = s['value'].describe()
x1 ,y1 = 0.25, st['25%']
x2 ,y2 = 0.75, st['75%']
ax3.plot([x1,x2],[y1,y2],'-r',linewidth = 3)

 

# 直接用算法做KS检验

from scipy import stats
stats.kstest(df['value'], 'norm', (u, std))
# 结果返回两个值:statistic → D值,pvalue → P值
# p值大于0.05,很可能为正态分布
'''

上一篇:学习和使用python的13个理由

栏    目:Python代码

下一篇:机器学习经典算法-logistic回归代码详解

本文标题:在python中做正态性检验示例

本文地址:http://www.codeinn.net/misctech/105805.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有