欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python math库 ln(x)运算的实现及原理

时间:2021-05-10 08:43:13|栏目:Python代码|点击:

这个是很有用的一个运算,除了本身可以求自然对数,还是求指数函数需要用到的基础函数。

实现原理就是泰勒展开,最简单是在x=1处进行泰勒展开:

但该函数离1越远越难收敛,同时大于2时无法收敛,所以需要进行换元,然后重新展开:


但是该换元在接近0时或者接近无穷大时收敛困难,处在1到10范围内收敛快且精度高,所以对大于10或小于1的值进行分解如下:

 ln(55000)=ln(5.5)+4ln10

 ln(0.0015)=ln(1.5)-4ln10

ln10为算好的值,可直接由ln_h1(10)得到

Epsilon 为精度控制

输出的i可以检测收敛次数。

Epsilon = 10e-16
ln10 = 2.30258509299404568401
def ln_h(x):
  '''
  ln函数泰勒换元展开
  :param x: 0<x
  :return:ln(x)
  '''
  def ln_h1(x):
    s2 = 0.0
    delta = x = (x - 1.0) / (x + 1.0)
    i = 0
    while fab_h(delta * 2) / (i * 2 + 1) > Epsilon:
      s2 += delta / (i * 2 + 1)
      delta *= x * x
      i += 1
    print(i)
    return 2 * s2
  coef = 0
  if x > 10:
    while x / 10 > 1:
      coef += 1
      x /= 10
    return ln_h1(x) + coef*ln10
  elif x < 1:
    while x * 10 < 10:
      coef += 1
      x *= 10
    return ln_h1(x) - coef*ln10
  else:
    return ln_h1(x)

上一篇:解决Python发送Http请求时,中文乱码的问题

栏    目:Python代码

下一篇:python 自动批量打开网页的示例

本文标题:Python math库 ln(x)运算的实现及原理

本文地址:http://www.codeinn.net/misctech/118311.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有