欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

pytorch 利用lstm做mnist手写数字识别分类的实例

时间:2021-05-11 08:55:09|栏目:Python代码|点击:

代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式。

# -*- coding: utf-8 -*-
"""
Created on Tue Oct 9 08:53:25 2018
@author: www
"""
 
import sys
sys.path.append('..')
 
import torch
import datetime
from torch.autograd import Variable
from torch import nn
from torch.utils.data import DataLoader
 
from torchvision import transforms as tfs
from torchvision.datasets import MNIST
 
#定义数据
data_tf = tfs.Compose([
   tfs.ToTensor(),
   tfs.Normalize([0.5], [0.5])
])
train_set = MNIST('E:/data', train=True, transform=data_tf, download=True)
test_set = MNIST('E:/data', train=False, transform=data_tf, download=True)
 
train_data = DataLoader(train_set, 64, True, num_workers=4)
test_data = DataLoader(test_set, 128, False, num_workers=4)
 
#定义模型
class rnn_classify(nn.Module):
   def __init__(self, in_feature=28, hidden_feature=100, num_class=10, num_layers=2):
     super(rnn_classify, self).__init__()
     self.rnn = nn.LSTM(in_feature, hidden_feature, num_layers)#使用两层lstm
     self.classifier = nn.Linear(hidden_feature, num_class)#将最后一个的rnn使用全连接的到最后的输出结果
     
   def forward(self, x):
     #x的大小为(batch,1,28,28),所以我们需要将其转化为rnn的输入格式(28,batch,28)
     x = x.squeeze() #去掉(batch,1,28,28)中的1,变成(batch, 28,28)
     x = x.permute(2, 0, 1)#将最后一维放到第一维,变成(batch,28,28)
     out, _ = self.rnn(x) #使用默认的隐藏状态,得到的out是(28, batch, hidden_feature)
     out = out[-1,:,:]#取序列中的最后一个,大小是(batch, hidden_feature)
     out = self.classifier(out) #得到分类结果
     return out
     
net = rnn_classify()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adadelta(net.parameters(), 1e-1)
 
#定义训练过程
def get_acc(output, label):
  total = output.shape[0]
  _, pred_label = output.max(1)
  num_correct = (pred_label == label).sum().item()
  return num_correct / total
  
  
def train(net, train_data, valid_data, num_epochs, optimizer, criterion):
  if torch.cuda.is_available():
    net = net.cuda()
  prev_time = datetime.datetime.now()
  for epoch in range(num_epochs):
    train_loss = 0
    train_acc = 0
    net = net.train()
    for im, label in train_data:
      if torch.cuda.is_available():
        im = Variable(im.cuda()) # (bs, 3, h, w)
        label = Variable(label.cuda()) # (bs, h, w)
      else:
        im = Variable(im)
        label = Variable(label)
      # forward
      output = net(im)
      loss = criterion(output, label)
      # backward
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
 
      train_loss += loss.item()
      train_acc += get_acc(output, label)
 
    cur_time = datetime.datetime.now()
    h, remainder = divmod((cur_time - prev_time).seconds, 3600)
    m, s = divmod(remainder, 60)
    time_str = "Time %02d:%02d:%02d" % (h, m, s)
    if valid_data is not None:
      valid_loss = 0
      valid_acc = 0
      net = net.eval()
      for im, label in valid_data:
        if torch.cuda.is_available():
          im = Variable(im.cuda())
          label = Variable(label.cuda())
        else:
          im = Variable(im)
          label = Variable(label)
        output = net(im)
        loss = criterion(output, label)
        valid_loss += loss.item()
        valid_acc += get_acc(output, label)
      epoch_str = (
        "Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, "
        % (epoch, train_loss / len(train_data),
          train_acc / len(train_data), valid_loss / len(valid_data),
          valid_acc / len(valid_data)))
    else:
      epoch_str = ("Epoch %d. Train Loss: %f, Train Acc: %f, " %
             (epoch, train_loss / len(train_data),
             train_acc / len(train_data)))
    prev_time = cur_time
    print(epoch_str + time_str)
    
train(net, train_data, test_data, 10, optimizer, criterion)    

上一篇:如何使用VSCode愉快的写Python于调试配置步骤

栏    目:Python代码

下一篇:详解Python 字符串相似性的几种度量方法

本文标题:pytorch 利用lstm做mnist手写数字识别分类的实例

本文地址:http://www.codeinn.net/misctech/119399.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有