欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

tensorflow 恢复指定层与不同层指定不同学习率的方法

时间:2021-05-12 09:11:03|栏目:Python代码|点击:

如下所示:

#tensorflow 中从ckpt文件中恢复指定的层或将指定的层不进行恢复:
#tensorflow 中不同的layer指定不同的学习率
 
with tf.Graph().as_default():
		#存放的是需要恢复的层参数
	 variables_to_restore = []
	 #存放的是需要训练的层参数名,这里是没恢复的需要进行重新训练,实际上恢复了的参数也可以训练
  variables_to_train = []
  for var in slim.get_model_variables():
   excluded = False
   for exclusion in fine_tune_layers:
   #比如fine tune layer中包含logits,bottleneck
    if var.op.name.startswith(exclusion):
     excluded = True
     break
   if not excluded:
    variables_to_restore.append(var)
    #print('var to restore :',var)
   else:
    variables_to_train.append(var)
    #print('var to train: ',var)
 
 
  #这里省略掉一些步骤,进入训练步骤:
  #将variables_to_train,需要训练的参数给optimizer 的compute_gradients函数
  grads = opt.compute_gradients(total_loss, variables_to_train)
  #这个函数将只计算variables_to_train中的梯度
  #然后将梯度进行应用:
  apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
  #也可以直接调用opt.minimize(total_loss,variables_to_train)
  #minimize只是将compute_gradients与apply_gradients封装成了一个函数,实际上还是调用的这两个函数
  #如果在梯度里面不同的参数需要不同的学习率,那么可以:
 
  capped_grads_and_vars = []#[(MyCapper(gv[0]), gv[1]) for gv in grads_and_vars]
  #update_gradient_vars是需要更新的参数,使用的是全局学习率
  #对于不是update_gradient_vars的参数,将其梯度更新乘以0.0001,使用基本上不动
 	for grad in grads:
 		for update_vars in update_gradient_vars:
 			if grad[1]==update_vars:
 				capped_grads_and_vars.append((grad[0],grad[1]))
 			else:
 				capped_grads_and_vars.append((0.0001*grad[0],grad[1]))
 
 	apply_gradient_op = opt.apply_gradients(capped_grads_and_vars, global_step=global_step)
 
 	#在恢复模型时:
 
  with sess.as_default():
 
   if pretrained_model:
    print('Restoring pretrained model: %s' % pretrained_model)
    init_fn = slim.assign_from_checkpoint_fn(
    pretrained_model,
    variables_to_restore)
    init_fn(sess)
   #这样就将指定的层参数没有恢复

上一篇:对Pyhon实现静态变量全局变量的方法详解

栏    目:Python代码

下一篇:Python实现转换图片背景颜色代码

本文标题:tensorflow 恢复指定层与不同层指定不同学习率的方法

本文地址:http://www.codeinn.net/misctech/119873.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有