欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python通过两个dataframe用for循环求笛卡尔积

时间:2021-05-20 09:27:57|栏目:Python代码|点击:

合并两个没有共同列的dataframe,相当于按行号求笛卡尔积。

最终效果如下

以下代码是参考别人的代码修改的:

def cartesian_df(A,B):
    new_df = pd.DataFrame(columns=list(A).extend(list(B)))
    for _,A_row in A.iterrows():
      for _,B_row in B.iterrows():
        row = A_row.append(B_row)
        new_df = new_df.append(row,ignore_index=True)
    return new_df
#这个方法,如果两张表列名重复会出错

这段代码的思路是对两个表的每一行进行循环,运行速度比较慢,复杂度应该是O(m*n),m是A表的行数,n是B表的行数。

因为我用到的合并表行数比较多,时间太慢,所以针对上面的代码进行了优化。

思路是利用dataframe的merge功能,先循环复制A表,将循环次数添加为列,直接使用merge合并,复杂度应该为O(n)(n是B表的行数),代码如下:

def cartesian_df(df_a,df_b):
  '求两个dataframe的笛卡尔积'
  #df_a 复制n次,索引用复制次数
  new_df_a = pd.DataFrame(columns=list(df_a))
  for i in range(0,df_b.shape[0]):
    df_a['merge_index'] = i
    new_df_a = new_df_a.append(df_a,ignore_index=True)
  #df_b 设置索引为行数
  df_b.reset_index(inplace = True, drop =True)
  df_b['merge_index'] = df_b.index
  #merge
  new_df = pd.merge(new_df_a,df_b,on=['merge_index'],how='left').drop(['merge_index'],axis = 1)
  return new_df

#两个原始表中不能有列名'merge_index'

使用一张8行的表和一张142行的表进行测试,优化前的方法用时:5.560689926147461秒

优化后的方法用时:0.1296539306640625秒(142行的表作为b表)

根据计算原理,将行数少的表放在b表可以更快,测试用时:0.021603107452392578秒(8行的表作为b表)

这个速度已经达到预期,基本感觉不到等待,优化完成。

上一篇:深入讨论Python函数的参数的默认值所引发的问题的原因

栏    目:Python代码

下一篇:Selenium的使用详解

本文标题:Python通过两个dataframe用for循环求笛卡尔积

本文地址:http://www.codeinn.net/misctech/124949.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有