欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

tensorflow 加载部分变量的实例讲解

时间:2021-05-31 08:23:54|栏目:Python代码|点击:

tensorflow模型保存为saver = tf.train.Saver()函数,saver.save()保存模型,代码如下:

import tensorflow as tf
 
v1= tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="v1")
v2= tf.Variable(tf.zeros([200]), name="v2")
saver = tf.train.Saver()
with tf.Session() as sess:
 init_op = tf.global_variables_initializer()
 sess.run(init_op)
 saver.save(sess,"checkpoint/model_test",global_step=1)

当我们保存模型后,我们可以通过saver.restore()来加载模型,初始化变量:

import tensorflow as tf
 
v1= tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="v1")
v2= tf.Variable(tf.zeros([200]), name="v2")
saver = tf.train.Saver()
with tf.Session() as sess:
 # init_op = tf.global_variables_initializer()
 # sess.run(init_op)
 saver.restore(sess, "checkpoint/model_test-1")
 # saver.save(sess,"checkpoint/model_test",global_step=1)

神经网络训练时,有时候我们需要从预训练的模型中加载部分参数,初始化当前模型,例如加入CNN有6层,我们需要从已有的模型初始化CNN前5层参数.这可以通过saver.restore()实现.

之前我们已经介绍可以通过tf.train.Saver()的保存部分变量的方法,即需要保存的变量列表,同样的,在变量初始化的时候,我们可以对需要单独初始化的变量分别定义一个tf.train.Saver()函数,这样就可以单独对该部分变量初始化,例如下面代码,saver1用于初始化变量v1,saver2用于初始化变量v2,v3:

import tensorflow as tf
 
v1= tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="v1")
v2= tf.Variable(tf.zeros([200]), name="v2")
v3= tf.Variable(tf.zeros([100]), name="v3")
#saver = tf.train.Saver()
saver1 = tf.train.Saver([v1])
saver2 = tf.train.Saver([v2]+[v3])
with tf.Session() as sess:
 # init_op = tf.global_variables_initializer()
 # sess.run(init_op)
 saver1.restore(sess, "checkpoint/model_test-1")
 saver2.restore(sess, "checkpoint/model_test-1")
 # saver.save(sess,"checkpoint/model_test",global_step=1)

上一篇:pandas apply使用多列计算生成新的列实现示例

栏    目:Python代码

下一篇:Python自动巡检H3C交换机实现过程解析

本文标题:tensorflow 加载部分变量的实例讲解

本文地址:http://www.codeinn.net/misctech/132251.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有