欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

基于Tensorflow使用CPU而不用GPU问题的解决

时间:2021-06-03 09:09:53|栏目:Python代码|点击:

之前的文章讲过用Tensorflow的object detection api训练MobileNetV2-SSDLite,然后发现训练的时候没有利用到GPU,反而CPU占用率贼高(可能会有Could not dlopen library 'libcudart.so.10.0'之类的警告)。经调查应该是Tensorflow的GPU版本跟服务器所用的cuda及cudnn版本不匹配引起的。知道问题所在之后就好办了。

检查cuda和cudnn版本

 首先查看cuda版本:

cat /usr/local/cuda/version.txt

 以及cudnn版本:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

重新安装对应版本Tensorflow

 根据前面查看得到的cuda和cudnn版本,到Tensorflow官网查看对应的Tensorflow-GPU版本,然后用conda install tensorflow-gpu=[version]重新安装(把[version]换成对应的版本比如1.12)就OK了。

上一篇:使用python实现tcp自动重连

栏    目:Python代码

下一篇:利用Python将图片中扭曲矩形的复原

本文标题:基于Tensorflow使用CPU而不用GPU问题的解决

本文地址:http://www.codeinn.net/misctech/134297.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有