欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

pandas数值计算与排序方法

时间:2021-06-04 07:54:40|栏目:Python代码|点击:

以下代码是基于python3.5.0编写的

import pandas
food_info = pandas.read_csv("food_info.csv")
# ---------------------特定列加减乘除-------------------------
print(food_info["Iron_(mg)"])
div_1000 = food_info["Iron_(mg)"] / 1000
add_100 = food_info["Iron_(mg)"] + 100
sub_100 = food_info["Iron_(mg)"] - 100
mult_2 = food_info["Iron_(mg)"]*2
# ---------------------某两列相乘---------------------------
water_energy = food_info["Water_(g)"] * food_info["Energ_Kcal"]
# ----------------------把某一列除1000,再添加新列----------------------------
iron_grams = food_info["Iron_(mg)"] / 1000
food_info["Iron_(g)"] = iron_grams
#-------------------Score=2×(Protein_(g))−0.75×(Lipid_Tot_(g))--------------
weighted_protein = food_info["Protein_(g)"] * 2
weighted_fat = -0.75 * food_info["Lipid_Tot_(g)"]
initial_rating = weighted_protein + weighted_fat
#----------------------------数据归一化-----------------------------------
max_calories = food_info["Energ_Kcal"].max()              #找列最大值
normalized_calories = food_info["Energ_Kcal"] / max_calories
normalized_protein = food_info["Protein_(g)"] / food_info["Protein_(g)"].max()
normalized_fat = food_info["Lipid_Tot_(g)"] / food_info["Lipid_Tot_(g)"].max()
food_info["Normalized_Protein"] = normalized_protein
food_info["Normalized_Fat"] = normalized_fat
# -------------------------------排序----------------------------------
food_info.sort_values("Sodium_(mg)", inplace=True)           #升序,inplace=True表示不从建DataFrame
print(food_info["Sodium_(mg)"])
food_info.sort_values("Sodium_(mg)", inplace=True, ascending=False)  #降序,ascending=False表示降序
print(food_info["Sodium_(mg)"])

上一篇:Django内容增加富文本功能的实例

栏    目:Python代码

下一篇:Python+Selenium随机生成手机验证码并检查页面上是否弹出重复手机号码提示框

本文标题:pandas数值计算与排序方法

本文地址:http://www.codeinn.net/misctech/135169.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有