欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

python计算牛顿迭代多项式实例分析

时间:2021-06-08 07:47:02|栏目:Python代码|点击:

本文实例讲述了python计算牛顿迭代多项式的方法。分享给大家供大家参考。具体实现方法如下:

''' p = evalPoly(a,xData,x).
  Evaluates Newton's polynomial p at x. The coefficient
  vector 'a' can be computed by the function 'coeffts'.
  a = coeffts(xData,yData).
  Computes the coefficients of Newton's polynomial.
'''  
def evalPoly(a,xData,x):
  n = len(xData) - 1 # Degree of polynomial
  p = a[n]
  for k in range(1,n+1):
    p = a[n-k] + (x -xData[n-k])*p
  return p
def coeffts(xData,yData):
  m = len(xData) # Number of data points
  a = yData.copy()
  for k in range(1,m):
    a[k:m] = (a[k:m] - a[k-1])/(xData[k:m] - xData[k-1])
  return a

希望本文所述对大家的Python程序设计有所帮助。

上一篇:详谈Python中列表list,元祖tuple和numpy中的array区别

栏    目:Python代码

下一篇:Python3中的bytes和str类型详解

本文标题:python计算牛顿迭代多项式实例分析

本文地址:http://www.codeinn.net/misctech/137917.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有