欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python对数据进行插值和下采样的方法

时间:2021-07-29 07:42:12|栏目:Python代码|点击:

使用Python进行插值非常方便,可以直接使用scipy中的interpolate

import numpy as np
x1 = np.linspace(1, 4096, 1024)
x_new = np.linspace(1, 4096, 4096)
from scipy import interpolate
tck = interpolate.splrep(x1, data)
y_bspline = interpolate.splev(x_new, tck)

其中y_bspline就是从1024插值得到的4096的数据

但是,scipy中好像并没有进行下采样的函数,嗯..难道是因为太过简单了么,不过好像用一个循环就可以完成,但如果把向量看成一个时间序列,使用pandas中的date_range模块也可以十分方便的以不同频率进行采样,并且,很多对文件的操作都是使用pandas操作的。

import pandas as pd
index = pd.date_range('1/1/2000', periods=4096, freq='T') #这个起始时间任意指定,freq为其频率
data = pd.read_table(filename, names=['feat'])
data.index = index
data_obj = data.resample('4T', label='right') #第一个为抽样频率,label表示左右开闭区间
data_new = data_new.asfreq()[0:]

因为data.resample返回的是一个 pandas.tseries.resample.DatetimeIndexResampler对象

所以想要获取其中的值可以通过 data_new.asfreq()[0:]获取

更多方法详见 pandas.DataFrame.resample

上一篇:Pycharm中出现ImportError:DLL load failed:找不到指定模块的解决方法

栏    目:Python代码

下一篇:对numpy中的where方法嵌套使用详解

本文标题:Python对数据进行插值和下采样的方法

本文地址:http://www.codeinn.net/misctech/162310.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有