欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

python 将numpy维度不同的数组相加相乘操作

时间:2021-08-16 09:21:39|栏目:Python代码|点击:

第一种

np矩阵可以直接与标量运算

>>>import numpy as np
>>>arr1 = np.arange(12).reshape([2,2,3])
>>>arr1
array([[[ 0, 1, 2],
  [ 3, 4, 5]],
  [[ 6, 7, 8],
  [ 9, 10, 11]]])
>>>arr1*5
array([[[ 0, 5, 10],
  [15, 20, 25]],
  [[30, 35, 40],
  [45, 50, 55]]])
>>>arr1-5
array([[[-5, -4, -3],
  [-2, -1, 0]],
  [[ 1, 2, 3],
  [ 4, 5, 6]]])
>>>arr1**2
array([[[ 0, 1, 4],
  [ 9, 16, 25]],
  [[ 36, 49, 64],
  [ 81, 100, 121]]])

第二种

若arr1是高维数组,如果arr2的维度与arr1某个子数组维度相同,那么可以相互作运算。

PyDev console: starting.
Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 16:52:21) 
[Clang 6.0 (clang-600.0.57)] on darwin
>>>import numpy as np
>>>arr1 = np.arange(12).reshape([2,2,3])
>>>arr1
array([[[ 0, 1, 2],
  [ 3, 4, 5]],
  [[ 6, 7, 8],
  [ 9, 10, 11]]])
>>>arr2 = np.array([2,2,2])
>>>arr2
array([2, 2, 2])
>>>arr1*arr2
array([[[ 0, 2, 4],
  [ 6, 8, 10]],
  [[12, 14, 16],
  [18, 20, 22]]])
>>>arr3 = np.arange(6).reshape([2,3])
>>>arr1*arr3
array([[[ 0, 1, 4],
  [ 9, 16, 25]],
  [[ 0, 7, 16],
  [27, 40, 55]]])

补充:python 按不同维度求和,最值,均值

当变量维数加大时很难想象是怎样按不同维度求和的,高清楚一个,其他的应该就很清楚了,什么都不说了,上例子,例子一看便明白…..

a=range(27)
a=np.array(a)
a=np.reshape(a,[3,3,3])

输出a的结果是:

array([[[ 0, 1, 2],
  [ 3, 4, 5],
  [ 6, 7, 8]],
  [[ 9, 10, 11],
  [12, 13, 14],
  [15, 16, 17]],
  [[18, 19, 20],
  [21, 22, 23],
  [24, 25, 26]]])

我们来看看 aa=np.sum(a,-1)的输出:

array([[ 3, 12, 21],
[30, 39, 48],
[57, 66, 75]])

bb=np.sum(a,2) 的输出

array([[ 3, 12, 21],
  [30, 39, 48],
  [57, 66, 75]])

cc=np.sum(a,0)的输出:

array([[27, 30, 33],
  [36, 39, 42],
  [45, 48, 51]])

cc=np.sum(a,1)的输出:

array([[ 9, 12, 15],
  [36, 39, 42],
  [63, 66, 69]])

第-1个维度与第2个维度是一样的,第-1个维度实际是指最后一个维度。

上一篇:Django中的CACHE_BACKEND参数和站点级Cache设置

栏    目:Python代码

下一篇:python 实现图片裁剪小工具

本文标题:python 将numpy维度不同的数组相加相乘操作

本文地址:http://www.codeinn.net/misctech/167345.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有