欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

tensorflow实现KNN识别MNIST

时间:2021-08-23 09:25:16|栏目:Python代码|点击:

KNN算法算是最简单的机器学习算法之一了,这个算法最大的特点是没有训练过程,是一种懒惰学习,这种结构也可以在tensorflow实现。

KNN的最核心就是距离度量方式,官方例程给出的是L1范数的例子,我这里改成了L2范数,也就是我们常说的欧几里得距离度量,另外,虽然是叫KNN,意思是选取k个最接近的元素来投票产生分类,但是这里只是用了最近的那个数据的标签作为预测值了。

__author__ = 'freedom' 
import tensorflow as tf 
import numpy as np 
 
def loadMNIST(): 
 from tensorflow.examples.tutorials.mnist import input_data 
 mnist = input_data.read_data_sets('MNIST_data',one_hot=True) 
 return mnist 
def KNN(mnist): 
 train_x,train_y = mnist.train.next_batch(5000) 
 test_x,test_y = mnist.train.next_batch(200) 
 
 xtr = tf.placeholder(tf.float32,[None,784]) 
 xte = tf.placeholder(tf.float32,[784]) 
 distance = tf.sqrt(tf.reduce_sum(tf.pow(tf.add(xtr,tf.neg(xte)),2),reduction_indices=1)) 
 
 pred = tf.argmin(distance,0) 
 
 init = tf.initialize_all_variables() 
 
 sess = tf.Session() 
 sess.run(init) 
 
 right = 0 
 for i in range(200): 
  ansIndex = sess.run(pred,{xtr:train_x,xte:test_x[i,:]}) 
  print 'prediction is ',np.argmax(train_y[ansIndex]) 
  print 'true value is ',np.argmax(test_y[i]) 
  if np.argmax(test_y[i]) == np.argmax(train_y[ansIndex]): 
   right += 1.0 
 accracy = right/200.0 
 print accracy 
 
if __name__ == "__main__": 
 mnist = loadMNIST() 
 KNN(mnist) 

上一篇:使用Django实现把两个模型类的数据聚合在一起

栏    目:Python代码

下一篇:使用 django orm 写 exists 条件过滤实例

本文标题:tensorflow实现KNN识别MNIST

本文地址:http://www.codeinn.net/misctech/169119.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有