欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

tensorflow学习笔记之tfrecord文件的生成与读取

时间:2021-09-02 10:07:07|栏目:Python代码|点击:

训练模型时,我们并不是直接将图像送入模型,而是先将图像转换为tfrecord文件,再将tfrecord文件送入模型。为进一步理解tfrecord文件,本例先将6幅图像及其标签转换为tfrecord文件,然后读取tfrecord文件,重现6幅图像及其标签。
1、生成tfrecord文件

import os
import numpy as np
import tensorflow as tf
from PIL import Image

filenames = [
'images/cat/1.jpg',
'images/cat/2.jpg',
'images/dog/1.jpg',
'images/dog/2.jpg',
'images/pig/1.jpg',
'images/pig/2.jpg',]

labels = {'cat':0, 'dog':1, 'pig':2}

def int64_feature(values):
	if not isinstance(values, (tuple, list)):
		values = [values]
	return tf.train.Feature(int64_list=tf.train.Int64List(value=values))

def bytes_feature(values):
	return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))

with tf.Session() as sess:
	output_filename = os.path.join('images/train.tfrecords')
	with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
		for filename in filenames:
			#读取图像
			image_data = Image.open(filename)
			#图像灰度化
			image_data = np.array(image_data.convert('L'))
			#将图像转化为bytes
			image_data = image_data.tobytes()
			#读取label
			label = labels[filename.split('/')[-2]]
			#生成protocol数据类型
			example = tf.train.Example(features=tf.train.Features(feature={'image': bytes_feature(image_data),
																			'label': int64_feature(label)}))
			tfrecord_writer.write(example.SerializeToString())

2、读取tfrecord文件

import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image

# 根据文件名生成一个队列
filename_queue = tf.train.string_input_producer(['images/train.tfrecords'])
reader = tf.TFRecordReader()
# 返回文件名和文件
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example, 
									features={'image': tf.FixedLenFeature([], tf.string), 
												'label': tf.FixedLenFeature([], tf.int64)})
# 获取图像数据
image = tf.decode_raw(features['image'], tf.uint8)
# 恢复图像原始尺寸[高,宽]
image = tf.reshape(image, [60, 160])
# 获取label
label = tf.cast(features['label'], tf.int32)

with tf.Session() as sess:
	# 创建一个协调器,管理线程
	coord = tf.train.Coordinator()
	# 启动QueueRunner, 此时文件名队列已经进队
	threads = tf.train.start_queue_runners(sess=sess, coord=coord)

	for i in range(6):
		image_b, label_b = sess.run([image, label])
		img = Image.fromarray(image_b, 'L')
		plt.imshow(img)
		plt.axis('off')
		plt.show()
		print(label_b)

	# 通知其他线程关闭
	coord.request_stop()
	# 其他所有线程关闭之后,这一函数才能返回
	coord.join(threads)

上一篇:python目录操作之python遍历文件夹后将结果存储为xml

栏    目:Python代码

下一篇:pytorch 如何实现HWC转CHW

本文标题:tensorflow学习笔记之tfrecord文件的生成与读取

本文地址:http://www.codeinn.net/misctech/171801.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有