欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python实现word2Vec model过程解析

时间:2021-12-01 10:31:26|栏目:Python代码|点击:

这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

import gensim, logging, os
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import nltk

corpus = nltk.corpus.brown.sents()

fname = 'brown_skipgram.model'
if os.path.exists(fname):
  # load the file if it has already been trained, to save repeating the slow training step below
  model = gensim.models.Word2Vec.load(fname)
else:
  # can take a few minutes, grab a cuppa
  model = gensim.models.Word2Vec(corpus, size=100, min_count=5, workers=2, iter=50)
  model.save(fname)

words = "woman women man girl boy green blue".split()
for w1 in words:
  for w2 in words:
    print(w1, w2, model.similarity(w1, w2))

print(model.most_similar(positive=['woman', ''], topn=1))
print(model.similarity('woman', 'girl'))girl

在gensim模块中已经封装了13年提出的model--word2vec,所以我们直接开始建立模型

这是建立模型的过程,最后会出现saving Word2vec的语句,代表已经成功建立了模型

这是输入了 gorvement和news关键词后 所反馈的词语 --- administration, 他们之间的相关性是0.508

当我在输入 women 和 man ,他们显示的相关性的0.638 ,已经是非常高的一个数字。

值得一提的是,我用的语料库是直接从nltk里的brown语料库。其中大概包括了一些新闻之类的数据。

大家如果感兴趣的话,可以自己建立该模型,通过传入不同的语料库,来calc 一些term的 相关性噢

上一篇:Python对切片命名的实现方法

栏    目:Python代码

下一篇:python实现简易内存监控

本文标题:Python实现word2Vec model过程解析

本文地址:http://www.codeinn.net/misctech/185408.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有