欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

python pipeline的用法及避坑点

时间:2021-12-20 10:43:55|栏目:Python代码|点击:

说明

1、在使用之前需要在settings中打开。

2、pipeline在settings中键表示位置(即pipeline在项目中的位置可以自定义),值表示离引擎的距离,越近数据越先通过:权重值小的优先执行。

3、当pipeline较多时,process_item的方法必须是returnitem,否则后一个pipeline获得的数据就是None值。

pipeline中必须有process_item方法,否则item无法接收和处理。

实例

from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.decomposition import PCA
estimators = [('reduce_dim', PCA()), ('clf', SVC())]
pipe = Pipeline(estimators)
pipe

内容扩展:

Python的sklearn.pipeline.Pipeline()函数可以把多个“处理数据的节点”按顺序打包在一起,数据在前一个节点处理之后的结果,转到下一个节点处理。除了最后一个节点外,其他节点都必须实现'fit()'和'transform()'方法, 最后一个节点需要实现fit()方法即可。当训练样本数据送进Pipeline进行处理时, 它会逐个调用节点的fit()和transform()方法,然后点用最后一个节点的fit()方法来拟合数据。

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
 
def polynomial_model(degree = 1):
    polynomial_features = PolynomialFeatures(degree = degree, include_bias = False)
    linear_regression = LinearRegression()
    pipeline = Pipeline([('polynomial_features', polynomial_features),
 ('linear_regression', linear_regression)])
    return pipeline

上一篇:python使用正则表达式检测密码强度源码分享

栏    目:Python代码

下一篇:python多线程超详细详解

本文标题:python pipeline的用法及避坑点

本文地址:http://www.codeinn.net/misctech/187514.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有