欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

pytorch 如何在GPU上训练

时间:2021-12-23 10:20:36|栏目:Python代码|点击:

1.网络模型转移到CUDA上

net = AlexNet()
net.cuda()#转移到CUDA上

2.将loss转移到CUDA上

criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()

这一步不做也可以,因为loss是根据out、label算出来的

loss = criterion(out, label)

只要out、label在CUDA上,loss自然也在CUDA上了,但是发现不转移到CUDA上准确率竟然降低了1%

3.将数据集转移到CUDA上

这里要解释一下数据集使用方法

#download the dataset
train_set = CIFAR10("./data_cifar10", train=True, transform=data_tf, download=True)
train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)

dataset是把所有的input,label都制作成了一个大的多维数组

dataloader是在这个大的多维数组里采样制作成batch,用这些batch来训练

    for im, label in train_data:
        i = i + 1
        im = im.cuda()#把数据迁移到CUDA上
        im = Variable(im)#把数据放到Variable里
        label = label.cuda()
        label =Variable(label)
        out = net(im)#the output should have the size of (N,10)

遍历batch的时候,首先要把拿出来的Image、label都转移到CUDA上,这样接下来的计算都是在CUDA上了

开始的时候只在转成Variable以后才迁移到CUDA上,这样在网络传播过程中就数据不是在CUDA上了,所以一直报错

训练网络时指定gpu显卡

查看有哪些可用的gpu

nvidia -smi

实时查看gpu信息1代表每1秒刷新一次

watch -n -1 nvidia -smi

指定使用的gpu

import os
# 使用第一张与第三张GPU卡
os.environ["CUDA_VISIBLE_DEVICES"] = "0,3"

上一篇:使用Python判断一个文件是否被占用的方法教程

栏    目:Python代码

下一篇:Python随机数种子(random seed)的使用

本文标题:pytorch 如何在GPU上训练

本文地址:http://www.codeinn.net/misctech/187765.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有