欢迎来到代码驿站!

当前位置:首页 >

反向传播BP学习算法Gradient Descent的推导过程

时间:2022-09-13 08:49:14|栏目:|点击:

BP算法是适用于多层神经网络的一种算法,它是建立在梯度下降法的基础上的。本文着重推导怎样利用梯度下降法来minimise Loss Function。

给出多层神经网络的示意图:

1.定义Loss Function

每一个输出都对应一个损失函数L,将所有L加起来就是total loss。

那么每一个L该如何定义呢?这里还是采用了交叉熵,如下所示:

最终Total Loss的表达式如下:

2.Gradient Descent

L对应了一个参数,即Network parameters θ(w1,w2…b1,b2…),那么Gradient Descent就是求出参数 θ?来minimise Loss Function,即:

梯度下降的具体步骤为:

图源:李宏毅机器学习讲稿

3.求偏微分

从上图可以看出,这里难点主要是求偏微分,由于L是所有损失之和,因此我们只需要对其中一个损失求偏微分,最后再求和即可。

先抽取一个简单的神经元来解释:

因为我们并不知道后面到底有多少层,也不知道情况到底有多复杂,我们不妨先取一种最简单的情况,如下所示:

4.反向传播

l对两个z的偏导我们假设是已知的,并且在这里是作为输入,三角形结构可以理解为一个乘法运算电路,其放大系数为 σ′(z)。但是在实际情况中,l对两个z的偏导是未知的。假设神经网络最终的结构就是如上图所示,那么我们的问题已经解决了:

其中:

但是假如该神经元不是最后一层,我们又该如何呢?比如又多了一层,如下所示:

原理跟上面类似,如下所示:

那假设我们再加一层呢?再加两层呢?再加三层呢?。。。,情况还是一样的,还是先求l对最后一层z的导数,乘以权重相加后最后再乘上 σ′(z′′,z′′′,...)即可。

最后给一个实例:

它的反向传播图长这样:

我们不难发现,这种计算方式很清楚明了地体现了“反向传播”四个字。好了,目标达成!!

5.总结

上一篇:CAPL 脚本对.ini 配置文件的高阶操作

栏    目:

下一篇:Docker容器部署consul的详细步骤

本文标题:反向传播BP学习算法Gradient Descent的推导过程

本文地址:http://www.codeinn.net/misctech/213561.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有