欢迎来到代码驿站!

JAVA代码

当前位置:首页 > 软件编程 > JAVA代码

Java 蒙特卡洛算法求圆周率近似值实例详解

时间:2021-01-16 12:32:56|栏目:JAVA代码|点击:

起源

 [1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.]1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和 Nick Metropolis共同发明,被称为蒙特卡洛方法。它的具体定义是:在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?蒙特卡洛(Monte Carlo)方法告诉我们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。(撒黄豆只是一个比喻。)

特点

蒙特卡洛方法的伟大之处,在于对精确性问题无法解决的时候,利用“模拟”的思想来求解。 在各个领域得以应用。本质是模拟(simulation): 利用大量随机输入,产生各种输出;结果的概率分布就是真实分布的“近似”。所以,输入的分布是否随机(目前计算机所能做的就是伪随机,并不能产生真正的随机分布),这个过程我们成为Sampling Random Variables。

计算圆周率近似值代码:

package com.xu.main; 
import java.util.Scanner; 
public class P9_1 { 
 static double MontePI(int n) { 
  double PI; 
  double x, y; 
  int i, sum; 
  sum = 0; 
  for (i = 1; i < n; i++) { 
   x = Math.random(); 
   y = Math.random(); 
   if ((x * x + y * y) <= 1) { 
    sum++; 
   } 
  } 
  PI = 4.0 * sum / n; 
  return PI; 
 } 
 public static void main(String[] args) { 
  int n; 
  double PI; 
  System.out.println("蒙特卡洛概率算法计算圆周率:"); 
  Scanner input = new Scanner(System.in); 
  System.out.println("输入点的数量:"); 
  n = input.nextInt(); 
  PI = MontePI(n); 
  System.out.println("PI="+PI); 
 } 
} 

输出:

蒙特卡洛概率算法计算圆周率:
输入点的数量:
9999999
PI=3.1417975141797516

总结

上一篇:Java IO学习之缓冲输入流(BufferedInputStream)

栏    目:JAVA代码

下一篇:spring boot+自定义 AOP 实现全局校验的实例代码

本文标题:Java 蒙特卡洛算法求圆周率近似值实例详解

本文地址:http://www.codeinn.net/misctech/46309.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有