欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

用pytorch的nn.Module构造简单全链接层实例

时间:2021-01-31 08:11:58|栏目:Python代码|点击:

python版本3.7,用的是虚拟环境安装的pytorch,这样随便折腾,不怕影响其他的python框架

1、先定义一个类Linear,继承nn.Module

import torch as t
from torch import nn
from torch.autograd import Variable as V
 
class Linear(nn.Module):

  '''因为Variable自动求导,所以不需要实现backward()'''
  def __init__(self, in_features, out_features):
    super().__init__()
    self.w = nn.Parameter( t.randn( in_features, out_features ) ) #权重w 注意Parameter是一个特殊的Variable
    self.b = nn.Parameter( t.randn( out_features ) )   #偏值b
  
  def forward( self, x ): #参数 x 是一个Variable对象
    x = x.mm( self.w )
    return x + self.b.expand_as( x ) #让b的形状符合 输出的x的形状

2、验证一下

layer = Linear( 4,3 )
input = V ( t.randn( 2 ,4 ) )#包装一个Variable作为输入
out = layer( input )
out

#成功运行,结果如下:

tensor([[-2.1934, 2.5590, 4.0233], [ 1.1098, -3.8182, 0.1848]], grad_fn=<AddBackward0>)

下面利用Linear构造一个多层网络

class Perceptron( nn.Module ):
  def __init__( self,in_features, hidden_features, out_features ):
    super().__init__()
    self.layer1 = Linear( in_features , hidden_features )
    self.layer2 = Linear( hidden_features, out_features )
  def forward ( self ,x ):
    x = self.layer1( x )
    x = t.sigmoid( x ) #用sigmoid()激活函数
    return self.layer2( x )

测试一下

perceptron = Perceptron ( 5,3 ,1 )
 
for name,param in perceptron.named_parameters(): 
  print( name, param.size() )

输出如预期:

layer1.w torch.Size([5, 3])
layer1.b torch.Size([3])
layer2.w torch.Size([3, 1])
layer2.b torch.Size([1])

上一篇:在Linux系统上部署Apache+Python+Django+MySQL环境

栏    目:Python代码

下一篇:python检测服务器是否正常

本文标题:用pytorch的nn.Module构造简单全链接层实例

本文地址:http://www.codeinn.net/misctech/54667.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有