欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

浅谈pytorch torch.backends.cudnn设置作用

时间:2021-02-12 08:49:17|栏目:Python代码|点击:

cuDNN使用非确定性算法,并且可以使用torch.backends.cudnn.enabled = False来进行禁用

如果设置为torch.backends.cudnn.enabled =True,说明设置为使用使用非确定性算法

然后再设置:

torch.backends.cudnn.benchmark = true

那么cuDNN使用的非确定性算法就会自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题

一般来讲,应该遵循以下准则:

如果网络的输入数据维度或类型上变化不大,设置  torch.backends.cudnn.benchmark = true  可以增加运行效率;

如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率。

所以我们经常看见在代码开始出两者同时设置:

torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True

上一篇:编写同时兼容Python2.x与Python3.x版本的代码的几个示例

栏    目:Python代码

下一篇:Pytorch 实现自定义参数层的例子

本文标题:浅谈pytorch torch.backends.cudnn设置作用

本文地址:http://www.codeinn.net/misctech/61529.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有