使用pandas对矢量化数据进行替换处理的方法
时间:2021-02-20 09:07:19|栏目:Python代码|点击: 次
使用pandas处理向量化的数据,进行数据的替换时不仅仅能够进行字符串的替换也能够处理数字。
做简单的示例如下:
In [4]: data = Series(range(5))
In [5]: data Out[5]: 0 0 1 1 2 2 3 3 4 4 dtype: int64
In [6]: data.replace(3,333) Out[6]: 0 0 1 1 2 2 3 333 4 4 dtype: int64
In [7]: data Out[7]: 0 0 1 1 2 2 3 3 4 4 dtype: int64
In [8]: data.replace({2:np.nan,4:444})
Out[8]:
0 0.0
1 1.0
2 NaN
3 3.0
4 444.0
dtype: float64
从上面可以看出,替换可以进行单个数字的替换,也可以穿入一个字典进行一个序列的替换。
简单的替换虽然也可以通过赋值进行修改,但是通过赋值进行修改的时候一般首先得进行数据替换对象的查找。但是,通过Series对象的replace方法进行数据替换的方便之处则在于省掉了数据对象的查询。
上一篇:Python测试Kafka集群(pykafka)实例
栏 目:Python代码
下一篇:有趣的python小程序分享
本文地址:http://www.codeinn.net/misctech/66511.html






