欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

在Pandas中给多层索引降级的方法

时间:2021-03-16 10:21:35|栏目:Python代码|点击:

# 背景介绍 通常我们不会在Pandas中主动设置多层索引,但是如果一个字段做多个不同的聚合运算, 比如sum, max这样形成的Column Level是有层次的,这样阅读非常方便,但是对编程定位比较麻烦. # 数据准备

import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(0, 14).reshape(7,2),columns =['a','b'] )
df.a = df.a %3
df['who'] = 'Bob'
df.loc[df.a%4==0,'who'] = 'Alice'

a b who
0 0 1 Alice
1 2 3 Bob
2 1 5 Bob
3 0 7 Alice
4 2 9 Bob
5 1 11 Bob
6 0 13 Alice

# 对一个字段同时用3个聚合函数

gp1 = df.groupby('who').agg({'b':[sum,np.max, np.min], 'a':sum})
gp1
b a
sum amax amin sum
who
Alice 8.0 7.0 1.0 0
Bob 28.0 11.0 3.0 6

索引是有层次的,虚要通过下面这种方式,个人感觉不是很方便.下面介绍2种方法来解决这个问题

#有层次的索引访问方法
gp1.loc['Bob', ('b', 'sum')]
28.0

# 直接去除一层

gp2 = gp1.copy(deep=True)
gp2.columns = gp1.columns.droplevel(0)
gp2

sum amax amin sum
who
Alice 8.0 7.0 1.0 0
Bob 28.0 11.0 3.0 6

# 把2层合并到一层

gp3 = gp1.copy(deep=True)
gp3.columns = ["_".join(x) for x in gp3.columns.ravel()]
gp3

b_sum b_amax b_amin a_sum
who
Alice 8.0 7.0 1.0 0
Bob 28.0 11.0 3.0 6

上一篇:python备份文件以及mysql数据库的脚本代码

栏    目:Python代码

下一篇:python基础教程之Filter使用方法

本文标题:在Pandas中给多层索引降级的方法

本文地址:http://www.codeinn.net/misctech/81830.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有