欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

pytorch掉坑记录:model.eval的作用说明

时间:2021-03-20 10:00:46|栏目:Python代码|点击:

训练完train_datasets之后,model要来测试样本了。在model(test_datasets)之前,需要加上model.eval(). 否则的话,有输入数据,即使不训练,它也会改变权值。

这是model中含有batch normalization层所带来的的性质。

在做one classification的时候,训练集和测试集的样本分布是不一样的,尤其需要注意这一点。

补充知识:pytorch测试的时候为何要加上model.eval()

Do need to use model.eval() when I test?

Sure, Dropout works as a regularization for preventing overfitting during training.

It randomly zeros the elements of inputs in Dropout layer on forward call.

It should be disabled during testing since you may want to use full model (no element is masked)

使用PyTorch进行训练和测试时一定注意要把实例化的model指定train/eval,eval()时,框架会自动把BN和DropOut固定住,不会取平均,而是用训练好的值,不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大!!!!!!

上一篇:Python实现遗传算法(二进制编码)求函数最优值方式

栏    目:Python代码

下一篇:详解有关PyCharm安装库失败的问题的解决方法

本文标题:pytorch掉坑记录:model.eval的作用说明

本文地址:http://www.codeinn.net/misctech/84327.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有