欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

python 实现在一张图中绘制一个小的子图方法

时间:2021-03-27 09:29:47|栏目:Python代码|点击:

有时候为了直观展现图的信息,可以在大图中添加小子图的方式进行数据分析,如下图所示:

具体的代码如下:该图连接了数据库,当然重要的不是数据展示,而是添加子图的方法。

import matplotlib.pyplot as plt
import MySQLdb as mdb
import numpy as np
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset


def graph():
  # 连接数据库
  conn = mdb.connect(host='127.0.0.1', port=3306, user='root', passwd='root', db='alibaba_trace', charset='utf8')

  # 如果使用事务引擎,可以设置自动提交事务,或者在每次操作完成后手动提交事务conn.commit()
  conn.autocommit(1) # conn.autocommit(True)

  # 使用cursor()方法获取操作游标
  cursor = conn.cursor()
  # 因该模块底层其实是调用CAPI的,所以,需要先得到当前指向数据库的指针。
  try:
    cursor.execute("select machineID, count(id) from batch_instance where machineID != 0 group by machineID")
    records = cursor.fetchall()
    list_records = list(records)

  except:
    import traceback
    traceback.print_exc()
    # 发生错误时回滚
    conn.rollback()
  finally:
    # 关闭游标连接
    cursor.close()
    # 关闭数据库连接
    conn.close()

  res = []
  res[:] = map(list, list_records)
  machineID = [x[0] for x in res]
  instance_num = [x[1] for x in res]
  print(max(instance_num))
  print(min(instance_num))


  fig = plt.figure()
  ax1 = fig.add_subplot(1, 1, 1)
  # # cdf
  # hist, bin_edges = np.histogram(instance_num, bins=len(np.unique(instance_num)))
  # cdf = np.cumsum(hist / sum(hist))
  # ax1.plot(bin_edges[1:], cdf, color='red', ls='-')
  # ax1.set_xlabel("instance number per machine")
  # ax1.set_ylabel("portion of machine")
  # plt.savefig('../../imgs_mysql/cdf_of_machine_instance.png')

  # # 直方图
  ax1.hist(instance_num, normed=False, alpha=1.0, bins=100)
  ax1.set_xlabel('instance number per machine')
  ax1.set_ylabel('machine number')
  # cdf 要添加的子图
  axins = inset_axes(ax1, width=1.5, height=1.5, loc='upper left')
  # ax1 大图
  # width height分别为子图的宽和高
  # loc 为子图在大图ax1中的相对位置 相应的值有
  # upper left
  # lower left
  # lower right
  # right
  # center left
  # center right
  # lower center
  # upper center
  # center
  hist, bin_edges = np.histogram(instance_num, bins=len(np.unique(instance_num)))
  cdf = np.cumsum(hist / sum(hist))
  axins.plot(bin_edges[1:], cdf, color='red', ls='-')
  axins.set_yticks([])
  # axins.set_xlabel("instance number per machine")
  # axins.set_ylabel("portion of machine")

  plt.savefig("../../imgs_mysql/hist_of_machine_instance")
  plt.show()

if __name__ == '__main__':
  graph()

上一篇:python 计算数组中每个数字出现多少次--“Bucket”桶的思想

栏    目:Python代码

下一篇:Python使用Numpy模块读取文件并绘制图片

本文标题:python 实现在一张图中绘制一个小的子图方法

本文地址:http://www.codeinn.net/misctech/88911.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有