欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Pytorch之Tensor和Numpy之间的转换的实现方法

时间:2021-03-29 09:42:44|栏目:Python代码|点击:

为什么要相互转换:

1. 要对tensor进行操作,需要先启动一个Session,否则,我们无法对一个tensor比如一个tensor常量重新赋值或是做一些判断操作,所以如果将它转化为numpy数组就好处理了。下面一个小程序讲述了将tensor转化为numpy数组,以及又重新还原为tensor:

2. Torch的Tensor和numpy的array会共享他们的存储空间,修改一个会导致另外的一个也被修改。

学习链接:https://github.com/chenyuntc/pytorch-book

特别提醒[注意Tensor大小写]

  1. 最重要的区别t.Tensort.tensor:不论输入的类型是什么,t.tensor()都会进行数据拷贝,不会共享内存;t.Tensor()与Numpy共享内存,但当Numpy的数据类型和Tensor的类型不一样的时候,数据会被复制,不会共享内存。
  2. 可使用t.from_numpy()或者t.detach()将Numpy转为Tensor,与原Numpy数据共享内存。

附上实验证明

常规转换:使用t.from_numpy()将Numpy转为Tensor,使用torch.numpy()将Tensor转为Numpy

需要注意的情况:使用t.Tensor()进行转换,发现Numpy的数据类型和Tensor的类型一致,因此共享内存

需要注意的情况:使用t.Tensor()进行转换,发现Numpy的数据类型和Tensor的类型不一致,因此b与a不共享内存

需要注意的情况:使用t.tensor()进行转换,只进行数据拷贝,不会共享内存

上一篇:Django中在xadmin中集成DjangoUeditor过程详解

栏    目:Python代码

下一篇:python高级特性简介

本文标题:Pytorch之Tensor和Numpy之间的转换的实现方法

本文地址:http://www.codeinn.net/misctech/90404.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有